NC2alpha interacts with BTAF1 and stimulates its ATP-dependent association with TATA-binding protein.

نویسندگان

  • Marcin P Klejman
  • Lloyd A Pereira
  • Hester J T van Zeeburg
  • Siv Gilfillan
  • Michael Meisterernst
  • H T Marc Timmers
چکیده

Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAF(II)170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2alpha (DRAP1) and NC2beta (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, we present evidence that the NC2alpha subunit interacts with BTAF1. In contrast, the NC2beta subunit is not able to associate with BTAF1 and seems to interfere with the BTAF1-TBP interaction. Addition of NC2alpha or the NC2 complex can stimulate the ability of BTAF1 to interact with TBP. This function is dependent on the presence of ATP in cell extracts but does not involve the ATPase activity of BTAF1 nor phosphorylation of NC2alpha. Together, our results constitute the first evidence of the physical cooperation between BTAF1 and NC2alpha in TBP regulation and provide a framework to understand transcription functions of NC2alpha and NC2beta in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutational analysis of BTAF1–TBP interaction: BTAF1 can rescue DNA-binding defective TBP mutants

The BTAF1 transcription factor interacts with TATA-binding protein (TBP) to form the B-TFIID complex, which is involved in RNA polymerase II transcription. Here, we present an extensive mapping study of TBP residues involved in BTAF1 interaction. This shows that residues in the concave, DNA-binding surface of TBP are important for BTAF1 binding. In addition, BTAF1 interacts with residues in hel...

متن کامل

Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae.

Spt3 of Saccharomyces cerevisiae is a factor required for normal transcription from particular RNA polymerase II-dependent promoters. Previous genetic and biochemical analyses have shown that Spt3 interacts with the yeast TATA-binding protein (TBP). To identify other factors that might interact with Spt3, we have screened for mutations that, in combination with an spt3 null mutation, lead to in...

متن کامل

Chromatin interaction of TATA-binding protein is dynamically regulated in human cells.

Gene transcription in mammalian cells is a dynamic process involving regulated assembly of transcription complexes on chromatin in which the TATA-binding protein (TBP) plays a central role. Here, we investigate the dynamic behaviour of TBP by a combination of fluorescence recovery after photobleaching (FRAP) and biochemical assays using human cell lines of different origin. The majority of nucl...

متن کامل

MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites.

MOT1 is an ATPase which can dissociate TATA binding protein (TBP)-DNA complexes in a reaction requiring ATP hydrolysis. Consistent with this observation, MOT1 can repress basal transcription in vitro. Paradoxically, however, some genes, such as HIS4, appear to require MOT1 as an activator of transcription in vivo. To further investigate the function of MOT1 in basal transcription, we performed ...

متن کامل

The dynamic personality of TATA-binding protein.

TATA-binding protein (TBP) is a central component of the transcription apparatus and its association with promoters is dynamically regulated genome-wide. Recent work has shed new light on the functional specificity of Mot1 and NC2, two factors that control TBP distribution and activity. These studies underscore how regulation of TBP globally influences fundamental aspects of gene expression, in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 22  شماره 

صفحات  -

تاریخ انتشار 2004